3 resultados para C5a Receptor Antagonist

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Several lines of evidence showed that inflammation is associated with changes in the expression of tachykinins both in human and animal models. Tachykinins, including substance P (SP), are small peptides expressed in the extrinsic primary afferent nerve fibres and enteric neurons of the gut: they exert their action through three distinct receptors, termed NK1, NK2 and NK3. SP modulates intestinal motility and enteric secretion, acting preferentially through the NK1 receptor. SP neural network and NK1 receptor expression are increased in patients with inflammatory bowel disease, and similar changes were observed in experimental models of inflammation. The 2,4 Dinitrobenzene Sulphonic Acid (DNBS) model of colitis is useful to study innate immunity, non-specific inflammation and wound healing; it has been suggested that the transmural inflammation seen in this model resembles that found in Crohn’s disease and can therefore be used to study what cells and mediators are involved in this type of inflammation. Aim: To test the possible protective effect of the NK1 receptor antagonist SSR140333 on: 1) acute model of intestinal inflammation; 2) reactivation of DNBS-induced colitis in rats. Methods: Acute colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat in 50% ethanol). Reactivation of colitis was induced by intrarectal injections of DNBS on day 28 (7.5 mg/rat in 35% ethanol). Animals were sacrificed on day 6 (acute colitis) and 29 (reactivation of colitis). SSR140333 (10 mg/kg) was administered orally starting from the day before the induction of colitis for 7 days (acute colitis) or seven days before the reactivation of colitis. Colonic damage was assessed by means of macroscopic and microscopic scores, myeloperoxidase activity (MPO) and TNF-α tissue levels. Enzyme immunoassay was used to measure colonic substance P levels. Statistical analysis was performed using analysis of variance (one-way or two-way, as appropriate) with the Bonferroni’s correction for multiple comparisons. Results: DNBS administration impaired body weight gain and markedly increased all inflammatory parameters (p<0.01). Treatment with SSR140333 10 mg/kg significantly counteracted the impairment in body weight gain, decreased macroscopic and histological scores and reduced colonic myeloperoxidase activity (p<0.01). Drug treatment counteracted TNF-α tissue levels and colonic SP concentrations (acute model). Similar results were obtained administering the NK1 receptor antagonist SSR140333 (3 and 10 mg/kg) for 5 days, starting the day after the induction of colitis. Intrarectal administration of DNBS four weeks after the first DNBS administration resulted in reactivation of colitis, with increases in macroscopic and histological damage scores and increase in MPO activity. Preventive treatment with SSR140333 10 mg/kg decreased macroscopic damage score, significantly reduced microscopic damage score but did not affect MPO activity. Conclusions: Treatment with SSR140333 significantly reduced intestinal damage in acute model of intestinal inflammation in rats. The NK1 receptor antagonist SSR140333 was also able to prevent relapse in experimental colitis. These results support the hypothesis of SP involvement in intestinal inflammation and indicate that NK receptor antagonists may have a therapeutic potential in inflammatory bowel disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MTDL (multi-target-directed ligand) design strategy is used to develop single chemical entities that are able to simultaneously modulate multiple targets. The development of such compounds might disclose new avenues for the treatment of a variety of pathologies (e.g. cancer, AIDS, neurodegenerative diseases), for which an effective cure is urgently needed. This strategy has been successfully applied to Alzheimer’s disease (AD) due to its multifactorial nature, involving cholinergic dysfunction, amyloid aggregation, and oxidative stress. Despite many biological entities have been recognized as possible AD-relevant, only four achetylcholinesterase inhibitors (AChEIs) and one NMDA receptor antagonist are used in therapy. Unfortunately, such compounds are not disease-modifying agents behaving only as cognition enhancers. Therefore, MTDL strategy is emerging as a powerful drug design paradigm: pharmacophores of different drugs are combined in the same structure to afford hybrid molecules. In principle, each pharmacophore of these new drugs should retain the ability to interact with its specific site(s) on the target and, consequently, to produce specific pharmacological responses that, taken together, should slow or block the neurodegenerative process. To this end, the design and synthesis of several examples of MTDLs for combating neurodegenerative diseases have been published. This seems to be the more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling the multifactorial nature of AD, and hopefully stopping its progression. According to this emerging strategy, in this work thesis different classes of new molecular structures, based on the MTDL approach, have been developed. Moreover, curcumin and its constrained analogs have currently received remarkable interest as they have a unique conjugated structure which shows a pleiotropic profile that we considered a suitable framework in developing MTDLs. In fact, beside the well-known direct antioxidant activity, curcumin displays a wide range of biological properties including anti-inflammatory and anti-amyloidogenic activities and an indirect antioxidant action through activation of the cytoprotective enzyme heme oxygenase (HO-1). Thus, since many lines of evidence suggest that oxidative stess and mitochondria impairment have a cental role in age-related neurodegenerative diseases such as AD, we designed mitochondria-targeted antioxidants by connecting curcumin analogs to different polyamine chains that, with the aid of electrostatic force, might drive the selected antioxidant moiety into mitochondria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gli endocannabinoidi (EC) sono una classe di composti che mimano gli effetti del Δ9-tetraidrocannabinolo. Essi comprendono l’anandamide (AEA) ed il 2-arachidonoilglicerolo (2-AG), molecole che interagiscono preferenzialmente con due specifici recettori, il CB1 ed il CB2. Più recente è la scoperta di due molecole EC simili, il palmitoiletanolamide (PEA) e l’oleiletanolamide (OEA), che tuttavia agiscono legando recettori diversi tra cui il PPARα ed il TRVP1. Studi sperimentali dimostrano che il sistema degli EC è attivato in corso di cirrosi epatica ed è coinvolto nel processo fibrogenico e nella patogenesi delle alterazioni emodinamiche tipiche della malattia. Esso partecipa alla patogenesi di alcune delle maggiori complicanze della cirrosi quali ascite, encefalopatia, cardiomiopatia ed infezioni batteriche. Scopo del presente studio è stato quello di studiare il ruolo degli EC nella patogenesi delle infezioni batteriche in corso di cirrosi. A tale scopo sono stati eseguiti un protocollo clinico ed uno sperimentale. Nel protocollo sperimentale la cirrosi è stata indotta mediante somministrazione di CCl4 per via inalatoria a ratti maschi Wistar. In tale protocollo i livelli circolanti di tutti gli EC sono risultati significativamente aumentati a seguito della somministrazione di LPS. La somministrazione dell’antagonista del recettore CB1, Rimonabant, inoltre, è stata efficace nel ridurre del 50% la mortalità a 24 ore dei ratti trattati col farmaco rispetto ai ratti trattati col solo LPS. Parallelamente il Rimonabant ha determinato una riduzione dell’espressione genica di molecole pro-infiammatorie e sostanze vasoattive. Lo studio clinico, condotto su 156 pazienti, ha confermato l’attivazione del sistema degli EC in corso di cirrosi epatica. Inoltre è stata identificata una forte correlazione tra il PEA e l’OEA e l’emodinamica sistemica ed una associazione con alcune delle maggiori complicanze. L’analisi statistica ha inoltre individuato l’OEA quale predittore indipendente di insufficenza renale e di sopravvivenza globale.